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Abstract
Effective medium approximation is derived to estimate the effective refractive
index ne and the group velocity vg in two-phase composites in which one of the
components is non-spherical, and even distributed in shape. Enhanced group
velocity may be achieved through the suitable adjustment of the particles’ shape
and shape distribution. The range of the volume fractions, in which the group
velocity is enhanced, will expand, once we take into account the non-spherical
shape or the shape distribution. Therefore, the non-spherical shape and shape
distribution play crucial roles in determining the group velocity in two-phase
composites.

PACS numbers: 41.20.Jb, 42.25.Dd, 83.80.Ab, 77.84.Lf

1. Introduction

The physics of inhomogeneous composite materials has been the subject of growing interest
over the years because of its potential applications in laser physics and optical technology
[1, 2]. Many interesting properties in composite materials have been predicted such as large
optical nonlinearity enhancement through the local field effect [3] and the tunability of the
group velocity through the adjustment of the dielectric properties of the components [4].
For the latter, Sølna and Milton [5, 6] showed that the planar composite materials, such
as superlattices of thin films, can exhibit a larger group velocity of electromagnetic signals
than the one in its components, if we combine one component with high refractive index
and low dispersion with the other component with low refractive index and high dispersion.
More recently, Mackay and Lakhtakia adopted effective medium approximation to deal with
enhancement group velocity in granular composite materials, in which both components are
spherical in shape and are randomly distributed [7].
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It is known that, for real composite materials, the granular inclusions are usually non-
spherical and even shape-distributed. In this paper, we aim at studying the effect of both the
shape and shape distribution of granular inclusions on the group velocity of electromagnetic
signals in two-phase composite materials. According to the suggestion by Bohren and Huffman
that spectra of particles of any complicated form may be approximated by the average spectra of
ellipsoidal particles [8], we assume that one component is ellipsoidal in shape with the volume
fraction p, while the other component is spherical with the volume fraction q = (1 − p).
Based on the self-consistent condition of zero net polarizability, we derive effective medium
approximation (EMA) to estimate the effective refractive index by taking into account the
shape or shape distribution [9–11]. Then, we can take one step forward to investigate the
group velocity in such composites. We shall see that the group velocity in the composites can
exceed the group velocities in their components by our suitable choice of the particles’ shape
or shape distribution.

Our paper is organized as follows. In section 2, on the basis of EMA, we establish the
formulae for the group velocity in the composite system with shape or shape distribution. In
section 3, we present our numerical results. Finally, a summary of our results will be given in
section 4.

2. Theoretical development

We consider a two-phase, three-dimensional granular composite, in which the ellipsoidal
component 1 with the volume fraction p and the permittivity ε1 = n2

1, and the spherical
component 2 with volume fraction q (≡1 − p) and permittivity ε2 = n2

2, are randomly
distributed and randomly oriented (ni are the refractive indices of the component i; we have
assumed that both phases have magnetic permeability µ = 1). According to the definition of
the group velocity of a wave packet propagating through each component, one yields [12]

vi = c

ni + ω dni

dω

∣∣∣∣∣
ω=ω0

, (1)

where ω0 is the centre frequency of the initial wave packet and c is the light speed in the free
space. Then, the group velocity in the homogenized composite media can be written as

vg = c

ne + ω dne
dω

∣∣∣∣∣
ω=ω0

, (2)

where ne is the effective refractive index and vg is evaluated at the angular frequency ω = ω0.
It is evident that the group velocity in composites depends not only on the effective refractive
index, but also on its variation with frequency.

We are now in a position to determine ne as a function of the physical parameters of the
components such as n1 and n2, and the volume fraction p. For this purpose, we consider
the embeddings of both components 1 and 2 in a uniform medium, which has an effective
refractive index ne. Since the particles are equally oriented, the average over all orientations
of the polarizability density produced in the granular inclusions made of component i is of the
form [9]

〈P 〉i = n2
i − n2

e

3

[
1

Lxn
2
i + (1 − Lx)n2

e

+
1

Lyn
2
i + (1 − Ly)n2

e

+
1

Lzn
2
i + (1 − Lz)n2

e

]
, (3)

where Lj is the ellipsoid depolarization factor along three-symmetric axes and will be used
to characterize the shape of the ellipsoids. Note that Lx + Ly + Lz = 1 must be satisfied.
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Incidentally, for different geometrical configurations of an identical roughing sphere, L can be
interpreted as equivalent depolarization factors. For example, one has Lx = Ly = 0.435 for
the single-strand chain and Lx = 0.0865, Ly = 0.827 for the fcc lattice [13]. The effective
refractive index ne can then be established by imposing the consistency requirement that the
arithmetic average of the polarizability density over different types of granular inclusions
vanishes

p〈P 〉1 + q〈P 〉2 = 0. (4)

As granular inclusions made of component 2 are spherical, equation (4) can be expressed as
[11, 13]

p
1

3

3∑
j=1

n2
1 − n2

e

n2
e + Lj

(
n2

1 − n2
e

) + 3(1 − p)
n2

2 − n2
e

n2
2 + 2n2

e

= 0. (5)

Here we would like to mention that in writing the above equations, we have assumed the
linear dimension of these particles to be small enough (compared to wavelength λ), so that the
quasi-static approximation is applicable. At the same time, the grains should be large enough
to exhibit the bulk property. Note that equation (5) can be valid for all volume fractions p
from 0 to 1 [9, 11].

First, we investigate the shape effect on the group velocity in the composites vg. For
simplicity, we assume that the ellipsoidal particles are spheroidal in shape and each spheroidal
particle possesses the same shape, described by the depolarization factor Lz ≡ L [Lx = Ly =
(1 − L)/2]. As a result, equation (5) reduces to

p
(
n2

1 − n2
e

) [
1

n2
e + L

(
n2

1 − n2
e

) +
4

(1 − L)n2
1 + (1 + L)n2

e

]
+ 9(1 − p)

n2
2 − n2

e

n2
2 + 2n2

e

= 0. (6)

Differentiation of equation (6) with respect to ω yields

dne

dω
= ρ1

n1

ne

dn1

dω
+ ρ2

n2

ne

dn2

dω
, (7)

with

ρ1 = p
[
8n2

e

/[
2n2

e + (1 − L)
(
n2

1 − n2
e

)]2
+ n2

e

/[
n2

e + L
(
n2

1 − n2
e

)]2]
p
[
8n2

1

/[
2n2

e + (1− L)
(
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1 − n2
e

)]2
+ n2

1

/[
n2

e + L
(
n2

1 − n2
e

)]2]
+ 27(1−p)n2

2

/(
n2

2 +2n2
e

)2,

ρ2 = 27(1 − p)n2
e

/(
n2

2 + 2n2
e

)2

p
[
8n2

1

/[
2n2

e + (1−L)
(
n2

1 − n2
e

)]2
+ n2

1

/[
n2

e + L
(
n2

1 − n2
e
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+ 27(1−p)n2

2

/(
n2

2 + 2n2
e

)2.

Equations (6), (7) and (2) allow us to control the group velocity by changing the particles’
shape.

Next, we take one step forward to investigate the effect of shape distribution on the group
velocity in the composites. For an assembly of component 1 having different ellipsoidal
shapes, 〈P 〉1 in equation (3) is generalized to be [14, 15]

〈P 〉1 = n2
1 − n2

e

3

∫ ∫ [
1

Lxn
2
1 + (1 − Lx)n2

e

+
1

Lyn
2
1 + (1 − Ly)n2

e

+
1

(1 − Lx − Ly)n
2
1 + (Lx + Ly)n2

e

]
f (Lx, Ly) dLx dLy, (8)

where f (Lx, Ly) is the distribution function of the depolarization factor, which can in principle,
be used to describe the shape distribution. Here we assume the shape distribution function to
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be [16]

f (Lx, Ly) = C�

(
Lx − 1

3
+

�

3

)
�

(
Ly − 1

3
+

�

3

)
�

(
2

3
+

�

3
− Lx − Ly

)
, (9)

where C = 2/�2 is the normalized constant and �(·) is the Heaviside function. Moreover,
� is the shape variance parameter of the granular inclusions made of component 1, which
defines both the domain of nonzero values and the half-width of the f (Lx, Ly) function.
Equation (9) indicates that deviations of particle shape from spherical to ellipsoidal are
considered to be equiprobable. As a matter of fact, � can change from zero to unity. Physically,
for � = 0, all granular inclusions are spherical in shape (Lj = 1/3 for j = 1, 2, 3), and for
� = 1, all possible ellipsoidal shapes are equiprobable [16]. Substituting equation (9) in (8),
one has

〈P 〉1 = 2

�2

[(
n2

e

n2
1 − n2

e

+
1 + 2�

3

)
ln

(
n2

e

/(
n2

1 − n2
e

)
+ (1 + 2�)/3

n2
e

/(
n2

1 − n2
e

)
+ (1 − �)/3

)
− �

]
. (10)

The self-consistency equation (4) can then be written as

2p

�2

[(
n2

e

n2
1 − n2

e

+
1 + 2�

3

)
ln

(
n2

e

/(
n2

1 − n2
e

)
+ (1 + 2�)/3

n2
e

/(
n2

1 − n2
e

)
+ (1 − �)/3

)
− �

]
+ 3(1 − p)

n2
2 − n2

e

n2
2 + 2n2

e

= 0.

(11)

Equation (11) is effective medium approximation with shape distribution, which will be used
to estimate the effective refractive index of the random mixture in which the first component
possesses the shape distribution form, described by equation (9). Similar to the above process,
one obtains

dne

dω
= κ1

n1

ne

dn1

dω
+ κ2

n2

ne

dn2

dω
, (12)

with

κ1 = 2p[ln(A/B) − �/B]n2
e

/(
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e
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e

)2 ,

κ2 = −9(1 − p)�2n2
e

/(
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2 + 2n2
e

)2

2p[ln(A/B) − �/B]n2
1

/(
n2
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e
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2

/(
n2

2 + 2n2
e

)2 ,

where A = n2
e

/(
n2

1 − n2
e

)
+ (1 + 2�)/3 and B = n2

e

/(
n2

1 − n2
e

)
+ (1 − �)/3.

3. Numerical results

For numerical calculations, we choose n1 = 20 and n2 = 1.2. Moreover, to observe the
enhanced group velocity easily, we set dn1

dω

∣∣
ω=ω0

= 1
ω0

and dn2
dω

∣∣
ω=ω0

= 20
ω0

.
In figure 1, we plot the group velocity vg against the volume fraction p in composite

materials consisting of spheroidal particles with various L. It is evident that the group velocity
vg in the composite can exceed group velocities in both components in certain volume
fraction regions, dependent on the shape of the spheroidal particles. For instance, when both
components are spherical in shape, i.e. L = 1/3, one has vg > vi (i = 1, 2) for 0.41 < p < 1.
To one’s interest, when the granular shape deviates from the spherical one, the volume fraction
range corresponding to the enhanced group velocity will be enlarged regardless of the prolate
(L < 1/3) or oblate (L > 1/3) one. Actually, for both needle-shape (L = 0) and disc-shape
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Figure 1. The group velocity vg in composite materials plotted against the volume fraction p for
various depolarization factors L with equations (6), (7) and (2). Note that the group velocities in
components are almost equal to each other.

(L = 1), the fraction region in which vg > v1 (and v2) lies in the whole range from 0 to 1. For
large volume fractions, the spheroidal particles made of component 1 always form an infinite
cluster through the whole system and the percolation effect arises. As a result, the group
velocity in the composites exhibits no dependence on the depolarization factors for large p.
In addition, in the composite media consisting of spherical inclusions (L = 1/3), one has the
maximal group velocity vg,max at pmax ≈ 0.54 and the minimal one vg,min at pmin ≈ 0.31.
With the variation of the depolarization factor from 1/3 to 0 (or 1), we predict that pmax shifts
to low volume fraction, accompanied with the increase of the maximal group velocity. This is
clearly shown in figure 2. Therefore, we conclude that the adjustment of the particle’s shape
from the spherical one is indeed helpful to realize the enhanced group velocity in composites.
To achieve the maximal group velocity, the use of the oblate spheroidal particles is more
prominent than the use of prolate inclusions.

Finally, we study the effect of shape distribution on the group velocity in the composites.
Numerical results are shown in figure 3. The shape distribution is also found to play an
important role in determining the group velocity in the composites. With increasing � from
� = 0 (all particles are spherical in shape) to � = 1 (all possible ellipsoids exist), the
fraction region corresponding to enhanced velocity expands as expected. For instance, we
have enhanced vg in the region p = 0.41–1.0 for � = 0 and in the region p = 0.23–1.0
for � = 1. Furthermore, from figure 4, we observe that the maximal group velocity vg,max

exhibits monotonic increase and its position exhibits the shifts to small volume fractions with
increasing �.
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Figure 2. The peak value of group velocity and the corresponding volume fraction against the
depolarization factor L.

Figure 3. The plot of vg against p for various shape distribution parameters � with equations (11),
(12) and (2).

4. Summary

In this paper, with the aid of effective medium approximation, we have found that the
introduction of the non-spherical shape and shape distribution is helpful to obtain enhanced
group velocity and to expand the range of volume fraction corresponding to the enhanced
group velocity. The maximal group velocity in the composite system can be achieved at a
certain volume fraction pc, which is strongly dependent on the particles’ shape and shape
distribution. As a result, we may get a maximal value of group velocity by taking into account
the shape and shape distribution.

Here, some comments are in order. Due to simplistic treatments of the distributional
statistics of the components, our formalisms do not include the effect of the scattering losses.
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∆

Figure 4. The peak value of group velocity and the corresponding volume fraction of the shaped
component against shape variance parameter �.

To take into account the scattering losses on the group velocity, some sophisticated approaches,
such as those provided by the strong-property-fluctuation theory [17], can be applied.
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